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Abstract— 3D Gaussian Splatting (3DGS) achieves high-
fidelity rendering with fast real-time performance, but existing
methods rely on offline training after full Structure-from-
Motion (SfM) processing. In contrast, this work introduces
On-the-Fly GS, a progressive framework enabling near real-
time 3DGS optimization during image capture. As each image
arrives, its pose and sparse points are updated via on-the-
fly SfM, and newly optimized Gaussians are immediately
integrated into the 3DGS field. We propose a progressive
local optimization strategy to prioritize new images and their
neighbors by their corresponding overlapping relationship,
allowing the new image and its overlapping images to get more
training. To further stabilize training across old and new im-
ages, an adaptive learning rate schedule balances the iterations
and the learning rate. Moreover, to maintain overall quality
of the 3DGS field, an efficient global optimization scheme
prevents overfitting to the newly added images. Experiments
on multiple benchmark datasets show that our On-the-Fly
GS reduces training time significantly, optimizing each new
image in seconds with minimal rendering loss, offering the first
practical step toward rapid, progressive 3DGS reconstruction.
https://xywjohn.github.io/GS On-the-Fly.github.io/

I. INTRODUCTION

Novel View Synthesis (NVS) aims to generate realistic
images of novel views based on a set of input images [1].
Recently, Kerbl et al. [2] introduced a novel 3D represen-
tation technique known as 3D Gaussian Splatting (3DGS),
which employs a large number of 3D Gaussian kernels to
represent a 3D scene. Subsequent research has made notable
advancements in improving the 3DGS field in terms of
training efficiency [3]–[11], rendering speed [12], [13], and
output quality [14]–[18]. However, most existing approaches
rely on an offline training solution, which means that 3DGS
can only be optimized after all images are processed by
Colmap [19], preventing immediate synthesis of novel views
upon completion of data acquisition [20]. While some recent
works [20]–[24] have made progress towards real-time/near
real-time training of 3DGS by integrating SLAM, such as
GS-SLAM [21], MonoGS++ [24]. They take indoor video
frames with spatial and temporal continuity as input, which
might degenerate in some practical applications [25], [26].

To address these limitations, we propose On-the-Fly GS, a
progressive framework for near real-time 3DGS field training
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Fig. 1. Our online On-the-Fly GS vs. Offline Training Method

that enables 3D Gaussian training during discrete image
capturing. As shown in Fig. 1, in our work, a new image can
be acquired in an arbitrary manner. Its pose and relevant new
point cloud are estimated online by the on-the-fly SfM [26]1,
which are then inputted into our on-the-fly GS to optimize
the corresponding local 3DGS field in near real time and
update the entire 3DGS field.

In contrast to the original 3DGS that focuses on re-
constructing a static scenario using a fixed set of images
and their corresponding poses, our On-the-Fly GS targets a
dynamically expanding scenario, where images are progres-
sively captured over time. This shift necessitates a different
training strategy tailored for the incremental expansion of
the 3DGS fields. A key challenge in training dynamic
scenes lies in the inconsistency of local quality within the
3DGS fields. Images captured earlier undergo more training
iterations, resulting in higher rendering quality, while newly
acquired images, having undergone fewer training iterations,
exhibit lower rendering quality. Consequently, the learning
rate decay strategy of the original 3DGS based on complete
3DGS field quality is no longer applicable. Instead, On-the-
Fly GS calculates the learning rate for each image based on
the number of iterations it has undergone. Images with fewer
training iterations are assigned higher learning rates, while
images with more iterations receive lower learning rates.

Furthermore, in the local optimization, based on the over-
lapping relationships, each local connected image is assigned
a weight that determines the number of training iterations it
will undergo. This weight encourages prioritizing training
the newly added images and their local overlapping images,
thereby accelerating the rendering quality in regions captured
more recently. To further enhance training efficiency and
near real-time performance for each image, two strategies
have been integrated into On-the-Fly GS: inspired by Adr-

1See more at https://yifeiyu225.github.io/on-the-flySfMv2.github.io/
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Gaussian [4], a load-balancing strategy is incorporated to
mitigate the over-accumulation of 3D Gaussians, while si-
multaneously ensuring fast training of newly added regions;
Drawing from insights from Taming-3DGS [8], we re-
implement the back-propagation by transitioning from pixel-
based parallelism to splatting-based parallel computation. In
summary, this work makes the following contributions:

• We propose On-the-Fly GS, a novel progressive solution
for near real-time 3DGS field optimization that enables
robust online training during image acquisition.

• To achieve robust and near real-time progressive 3DGS
training, self-adaptive methods are presented to deter-
mine the training iteration number of each image and
to update the learning rate during each iteration.

• Our On-the-Fly GS reduces training time significantly
on several benchmark datasets, offering the first practi-
cal step toward rapid 3DGS optimization during image
capturing.

II. RELATED WORKS
Novel View Synthesis (NVS). Novel View Synthesis has
been a central research topic in both computer vision and
computer graphics for many years [27]. Traditionally, various
approaches have been developed to achieve NVS. Light Field
Rendering employs light field cameras to capture light field
data, enabling novel view synthesis by interpolation [28],
[29]. The Lumigraph method [30], [31] improves Light Field
Rendering with greater flexibility and broader applicability.
View Interpolation [32] utilizes multi-view images to inter-
polate among existing images, while it still employs a tra-
ditional photogrammetry method to generate a mesh model
of the scene and renders images from arbitrary viewpoints
using back-projection [33]. In recent years, the advent of
Neural Radiance Fields (NeRF) [34] and 3D Gaussian Splat-
ting (3DGS) [2] has introduced novel paradigms for NVS.
NeRF, based on volumetric rendering, leverages a multi-
layer perceptron (MLP) to implicitly represent a 3D scene.
The original NeRF demonstrated remarkable performance
in small-scale scenes (e.g., desk-size objects), subsequent
NeRF variants further improved its performance by reducing
training time [35], enhancing rendering efficiency [36] and
quality [37], enabling large-scale scene modeling [38], etc.
However, contemporary NeRF methods still face significant
challenges in complex, unbounded outdoor scenes where
achieving high-quality, high-resolution rendering often re-
quires extensive training time, making real-time rendering
infeasible. To address these limitations, Kerbl et al. [2]
introduced 3DGS to explicitly represent 3D scenes.

3DGS fast training. Although 3DGS delivers high-quality
and real-time rendering, its training process remains com-
putationally intensive. Consequently, extensive research has
been dedicated to accelerating the 3D Gaussians optimiza-
tion. Several studies have sought to expedite 3DGS training
by reducing the number of Gaussians in the scene repre-
sentation [3]–[7]. Panagiotis et al. [3] proposed an efficient
and resolution-aware Gaussians pruning strategy along with
an adaptive adjustment method for the degree of spherical

harmonic coefficients. It reduces the number of Gaussians
by more than 50% and saves the memory. Adr-Gaussian [4]
introduced a load balancing strategy to optimize the distribu-
tion of Gaussians and prevent their excessive accumulation in
specific regions, thereby reducing the number of Gaussians.
EfficientGS [6] selectively restricted the increase in key
Gaussians and implemented a pruning mechanism to remove
redundant ones, retaining critical Gaussians while removing
unnecessary ones. Similarly, LightGaussian [7] introduced a
global importance-based pruning strategy, retaining critical
and removing redundant Gaussians. Since 3DGS training
requires optimizing the parameters of a large number of
Gaussians, reducing 3D Gaussians can significantly enhance
training speed and decrease memory overhead.

Some studies also focused on refining training strategies to
improve computational efficiency. Adr-Gaussian [4] adopts
an early culling strategy during forward-propagation, refining
the influence range of each Gaussian. Taming 3DGS [8]
implements a Gaussian-based parallel strategy for gradient
accumulation and optimizes the computation of spherical
harmonics and differentiable loss functions, thereby enhanc-
ing back-propagation efficiency. RetinaGS [9] and DOGS
[10] address the challenge of large-scale scenes and high-
resolution image data. They propose a parallel training
method that divides the whole scene into several overlapping
blocks, enabling parallel and accelerating training for large-
scale scenes. Unlike methods that focus on reducing the
number of Gaussians, these approaches optimize specific
computational steps in the training pipeline, achieving sig-
nificant speed improvements.

3DGS real-time training. Recent studies have explored
real-time training of 3DGS. Before 3DGS, through integra-
tion with SLAM, NICE-SLAM [22] and Vox-Fusion [23]
successfully achieve real-time NeRF training. In addition,
Gaussian Splatting SLAM [21], MonoGS++ [24] and RTG-
SLAM [20] have further improved real-time 3DGS training,
delivering higher rendering quality. While these methods
enable real-time 3DGS training, they struggle to handle
discrete images that are not with spatially and temporally
continuous. In contrast, our On-the-Fly GS, which can
deal with images captured in an arbitrary way, employs a
progressive framework for near real-time 3DGS training. It
addresses the limitations of existing SLAM-based methods
and extends the applicability of 3DGS training to more
general use cases.

III. PRELIMINARIES

In this section, two key preliminaries of 3DGS [2] and
On-the-fly SfM [26] are introduced.
3D Gaussian Splatting. 3DGS employs a large number of
Gaussians to represent a real 3D scene [2]. The geometric
properties of each Gaussian are defined using a 3D Gaussian
distribution:

G(X) = e−
1
2 (X−X0)

TΣ−1(X−X0), (1)

Where X0 represents the center position of a Gaussian, X
represents the position of a sampled point, and Σ corresponds



to the covariance matrix of the Gaussian distribution. For
each Gaussian, its covariance matrix Σ can be formulated
by a rotation matrix R and a scaling matrix S, as follows:

Σ = RSSTRT . (2)

The above parameters define the geometric properties of a
Gaussian. Besides, 3DGS uses spherical harmonics (SH) and
opacity σ to reveal the material properties. Before calculating
the color of one specific pixel, 3DGS estimates the splatting
opacity α based on the Gaussian-pixel 2D distance x and
the projected covariance matrix Σ′:

α = σe−
1
2x

TΣ
′−1x. (3)

Given the splatting opacities αi and color ci calculated
from SH of N Gaussians associated with the current pixel,
3DGS calculates the color of the current pixel cp by alpha
blending, as follows:

cpixel =

N∑
i=1

ciai

i−1∏
j=1

(1− aj)

 (4).

During a novel view rendering, 3DGS assigns a dedicated
thread to each pixel, enabling parallel computation of the
color of each pixel to facilitate high-quality, real-time image
rendering.
On-the-Fly SfM. Before training the original 3DGS field,
COLMAP [19] is typically used for pose estimation and
sparse point cloud generation. However, COLMAP requires
feature matching across all images, making it impractical
in scenarios where image acquisition and 3DGS training
occur simultaneously, such as our On-the-Fly GS training. To
overcome this limitation, instead of COLMAP, we use the
On-the-Fly SfM [26] for our subsequent experiments. On-
the-Fly SfM employs a Hierarchical Weighted Local Bundle
Adjustment (BA), in which only neighboring connected and
registered images are incorporated into BA after acquiring a
new image. Unlike COLMAP’s BA, which incurs a substan-
tial computational cost as the number of images increases,
Hierarchical Weighted Local BA significantly reduces time
complexity, ensuring efficient processing. Additionally, On-
the-Fly SfM can achieve online feature matching via global
feature retrieval on HNSW (Hierarchical Navigable Small
World) [39], enabling efficient dynamic updates for the
matching matrix. On-the-fly SfM allows for near real-time
pose estimation and sparse point cloud generation immedi-
ately after capturing a new image, ensuring a continuous and
timely input for our approach.

IV. METHODOLOGY

A. Overview of on-the-fly GS

To achieve near real-time 3DGS field optimization, the
3DGS field is supposed to be trained concurrently with image
acquisition. Therefore, rather than relying on the original
offline training solution of 3DGS, we propose a progressive
training framework. As illustrated in Fig. 2, our training
process is structured into three distinct phases:

Phase 1: Initial 3DGS Training. Training the 3DGS field
with a limited number of images risks overfitting to the initial
few images (e.g., 2 or 3 images) [40]. To mitigate this, we
begin by training an initial 3DGS field after On-the-Fly SfM
has estimated the poses and generated the sparse point cloud
for N0 initial images. This initial 3DGS field serves as the
foundation for subsequent progressive training. In this phase,
we adopt the original 3DGS training method but set a more
severe number for training iterations to prevent overfitting to
these initial images.
Phase 2: Progressive 3DGS Training. As a new image is
acquired, On-the-Fly SfM continuously updates the camera
poses of both the newly acquired and previously registered
images, while refining the sparse point cloud. Based on the
updated sparse point cloud, some new Gaussians are ap-
pended to the previous 3DGS field. The updated model will
be then optimized. The optimization process contains local
optimization and global optimization. The local optimization
focuses on fast optimization of the newly added regions
of the 3DGS field, while the global optimization ensures
the overall quality and consistency of the 3DGS field and
prevents overfitting to the newly added images.
Phase 3: Final Optimization. Once all images have been
acquired and the progressive training is complete, a final
optimization is performed on the current 3DGS field. This
step further refines the model and enhances its overall quality,
ensuring the best reconstruction result.

B. 3D Gaussian field Update with newly fly-in images
For the newly fly-in image, On-the-Fly SfM estimates

the pose of the new image and optimizes the pose of
its neighboring connected images via an improved local
BA [26], simultaneously updating the sparse point cloud.
Before updating the previously trained 3DGS field, a search
tree is constructed for the existing sparse point cloud. The
sparse points from the new image are then queried against
this search tree using a predefined threshold. Points in the
new image whose shortest distance from the existing points
exceeds the threshold are classified as newly added points.
These newly added points are then initialized as newly
added Gaussians and directly incorporated into the current
3DGS field, facilitating the 3DGS field training on the newly
expanded region.

C. Self-adaptive Training Iteration Allocation via Hierarchi-
cal Image Weighting

Newly added images often introduce novel unexplored
regions or correspond to areas where the current 3DGS
field exhibits poor rendering quality. To ensure that more
training is allocated to the new image and its neighboring
connected images during local optimization, we propose an
image hierarchical weighting strategy, which can be used to
adaptively allocate training iterations for each image. The
weight is determined by the overlap relationship between
the newly fly-in image and the already registered images, as
depicted in Fig. 3.

Assuming that there are n − 1 registered images, when
the image n (I11, l = 1) is newly added, the weight of



Fig. 2. Workflow of the proposed On-the-Fly GS.

Fig. 3. The Hierarchical Image Weighting.

the newly added image is fixed as ω11 = 1. The weights
of the remaining registered images are calculated based on
the match matrix online estimated by On-the-Fly SfM. If the
overlapping degree of any two images is Mi,j , for images I2i
that have a direct overlapping relationship (Mi,n ̸= 0, l = 2)
with the newly added image, their weights ω2i are calculated
using the following equation:

ω2i = ω11 ×Mi,n = Mi,n. (5)

For images Ili that have an indirect overlapping relationship
(Mi,n = 0, l ≥ 3) with the newly added image, their weights
are determined by their overlapping relationship with images
in the previous layer and the weights of those images. If the
layer k− 1 contains D images, the weight of the image j in
the layer k − 1 is ω(k−1)j , the weight of the corresponding
image i in layer k will be calculated as follows:

ωki =

∑D
j=1ω(k−1)j ×M(k−1)j,ki

D
(6)

Based on the hierarchical weighting method, we can
adaptively assign a weight to all registered images including
the newly added image. Subsequently, the training iterations
for local neighboring images will be allocated based on their

weights. For N images, with given weight ωi of image i, the
training iterations Ti can be calculated as follows:

Ti =
ωi∑N
j=1ωj

× LOT (7)

LOT represents the number of training iterations required
during each local optimization. This hierarchical weighting
method assigns higher weights for the newly added image
and its neighboring connected images while the remaining
images are given lower weights, ensuring the newly added
image and its neighboring connected images receive more
training in the current local optimization.

D. Adaptively Learning Rate Updating

The progressive training in On-the-Fly GS may result in
inconsistency in local quality within the 3DGS field. To
address this issue, we dynamically update the learning rate
based on the rendering quality of each image, instead of
updating the learning rate based on the overall quality of
the 3DGS field (this was applied in the original 3DGS).
Specifically, for image j, if it has been trained for ITj

iterations, with the initial learning rate ILr and the final
learning rate FLr, the current learning rate LogLrj for the
image j can be calculated as follows:

LogLrj = eln(ILr)×(1−ti)+ln(FLr)×ti , (8)

ti =

{
1, ITj > Mean

ITj

Mean , ITj ≤ Mean
, (9)

where Mean is a predefined parameter that represents
the number of training iterations required for an image to
achieve satisfactory rendering quality. However, determining
the learning rate based on the already trained iterations
of a single image is not rigorous. This is because other



images overlapping with image j might already achieve
satisfactory rendering quality. Thus, when determining the
current learning rate, it makes sense to also consider the
overlapping images among the registered images. If the set
of overlapping images OI for the current image j contains
RN images (i.e., for any i ∈ OI ,Mi,j > 0). The learning
rate Lrj for image j can be calculated as follows:

Lrj =
LogLrj +

∑RN
i=1Mi,j × LogLri

RN + 1
. (10)

The proposed learning rate updating method considers the
rendering quality of the 3DGS field within the local scene.
If the local scene corresponding to the current image j has
achieved high rendering quality, the learning rate Lrj is
supposed to be lower. This is because multiple images over-
lapping with image j have been trained for more iterations
(even if image j is newly added), as shown in Fig. 4 (left).
If the local scene corresponding to the image j performs
poor rendering quality, which indicates that both image j
and its neighboring connected images are only trained for
fewer iterations, the learning rate Lrj should be higher, as
shown in Fig. 4 (right).

Fig. 4. Adaptively Learning Rate Updating

E. Load Balancing and 3DGS Runtime Optimization

Some local areas may undergo excessive Gaussian ac-
cumulation due to being visible across multiple images,
while newly introduced scenes may suffer from insufficient
Gaussian kernels. To address this uneven distribution of
Gaussians, inspired by Adr-Gaussian [4], we employ a load
balancing training. For the current training image i, we
record the number of Gaussians GNp associated with each
pixel p in image i. Using the standard deviation of Gaussian
distribution within the visible range of the image, we define
a Load-Balancing-Loss Lload as follows:

Lload = std (GNp) , p ∈ i. (11)

With L1-Loss and SSIM-Loss, the total loss is as follows:

LOSS = λ1L1 + λssimLssim + λloadLload. (12)

Subsequent experiments demonstrate that the load balanc-
ing strategy not only prevents the abnormal accumulation
of Gaussians in some specific regions but also effectively
reduces the total number of Gaussians in the 3DGGS field,

thereby accelerating the overall training process. Further-
more, it facilitates the densification of Gaussians in newly
added regions, promoting faster 3DGS training.

To further accelerate the training of the 3DGS field, we
integrate the strategy proposed by Taming 3DGS [8]. Taming
3DGS identified that the per-pixel gradient accumulation
method used in the original 3DGS leads to multiple threads
contending for accessing the same locations and thus seri-
alized atomic operations. To address this, we implemented
the corresponding Splatting-based parallelism in the gradient
accumulation method. In this implementation, gradients are
accumulated directly for each Gaussian, significantly reduc-
ing training time by eliminating contention and enhancing
parallel processing efficiency.

V. EXPERIMENT

A. Experimental Settings

Datasets and Metrics. To validate the efficacy of our On-
the-Fly GS, we utilizes several datasets from the 3DGS [2],
Mip-NeRF 360 [41], On-the-Fly SfM [25], [26], and TUM-
RGBD [42]. This contains three indoor scenes, two small-
scale outdoor scenes, and one UAV image, which are dy-
namically processed as simulated sequential inputs according
to the original stored order. Based on these datasets, the
corresponding performance is evaluated from three aspects:
1) Training efficiency. Since On-the-Fly GS is capable of
simultaneous estimation of image poses and 3DGS training,
we record the time consumption of different methods starting
from the moment image pose estimation begins until the
final 3DGS field is obtained. 2) Rendering quality. We
use the same common metrics as those used in 3DGS,
including PNSR, SSIM and LPIPS. 3) Video Memory. We
analyse the trained 3DGS field memory consumption of
each method. In addition, for On-the-Fly GS, we record
the time of the complete training process and evaluate the
rendering quality. To compare with other offline-training
methods, we first investigate the training time required to
achieve the same rendering quality as our On-the-Fly GS,
followed by exploring their default training iteration settings.
All experiments are conducted under the same hardware
configuration (Single NVIDIA RTX 4090 GPU).

Implementation details. The optimization process of our
On-the-Fly GS includes three stages (see Fig. 2). In phase
1 of initialization, after On-the-Fly SfM completes pose
estimation and sparse point cloud generation for the first
N0 = 16 images, we perform 2,000 training iterations on
these images. In phase 2, for each newly acquired image,
we first run 100 iterations of local optimization, followed
by 100 iterations of global optimization. Additionally, the
preset parameter Mean is 195, ILr is 1.6e − 4 and FLr is
1.6e − 6. In the last phase 3, an additional 1,000 iterations
of fast global optimization are performed to further improve
the overall model quality. The weight of Load-Balancing-
Loss λload, L1-Loss λ1 and SSIM-Loss λssim are set to 0.41,
0.47 and 0.12, respectively.



TABLE I
COMPARISON WITH OFFLINE SOLUTIONS AT SAME RENDERING PERFORMANCE AS ON-THE-FLY GS. BEST AND SECOND-BEST ARE HIGHLIGHTED IN

BOLD AND UNDERLINE.

Dataset ImageNum Methods Video Memory (MB) PSNR COLMAP/
On-the-Fly SfM (min) 3DGS Training (min) Total Time (min)

Counter 240

3DGS 218.07

27.68 16.92

4.91 21.83
Taming-3DGS 221.38 1.38 18.20
Adr-Gaussian 121.56 3.76 20.68

Ours-Offline GS 119.06 3.14 20.06
On-the-Fly GS 118.36 14.85 \ 14.85+0.48

Train 301

3DGS 128.15

21.01 16.39

2.82 19.21
Taming-3DGS 135.44 1.31 17.70
Adr-Gaussian 69.73 2.18 18.57

Ours-Offline GS 75.61 1.44 17.83
On-the-Fly GS 159.68 19.21 \ 19.21+0.36

YD 125

3DGS 2124.37

22.04 12.55

13.58 26.13
Taming-3DGS 2183.01 8.31 20.85
Adr-Gaussian 1384.139 15.27 27.82

Ours-Offline GS 1084.87 6.48 19.03
On-the-Fly GS 699.34 7.70 \ 7.70+0.55

Palace 210

3DGS 100.95

21.41 14.17

10.49 24.66
Taming-3DGS 118.36 4.02 18.19
Adr-Gaussian 48.68 9.65 23.82

Ours-Offline GS 62.01 3.46 17.63
On-the-Fly GS 173.94 16.54 \ 16.54+0.38

B. Comparisons with other SOTA methods

We compare the proposed On-the-Fly GS with four
offline-training solutions (3DGS [2], Adr-Gaussian [4],
Taming-3DGS [8] and Ours-Offline GS training). Ours-
Offline GS refers to an offline training pipeline that incor-
porates Load Balancing and Splatting-based parallelism in
backpropagation strategies, while keeping all other settings
identical to 3DGS. COLMAP is employed for pose estima-
tion and sparse point cloud generation for the offline-training
methods, while On-the-Fly SfM is employed to estimate pose
and generate sparse point cloud for our On-the-Fly GS.

Table I reports the corresponding metrics when the four
offline training solutions achieve the same rendering perfor-
mance as that can be generated by our On-the-Fly GS. It can
be seen that On-the-Fly GS shows a significant advantage
in terms of cost time. Apart from the time (before the +)
required for On-the-Fly SfM to do online pose estimation
and sparse point cloud generation, only a small amount
of extra overload (after the +) is needed to complete the
3DGS training. Generally, it takes around 2-3 seconds for a
newly fly-in image to finish the 3DGS optimization, which
is sufficient for near real-time performance and demon-
strates the capability of simultaneous image acquisition,
pose estimation, and 3DGS training. On the other hand,
the offline training solutions need to finish the Colmap
processing before training. They also typically take longer
for both pose estimation and 3DGS training, further leading
to more total time for offline training. Furthermore, the model
obtained through On-the-Fly GS has the smallest model size
in some scenarios, which means that the proposed method
is promising to enable lightweight 3DGS training.

To further investigate the discrepancy between our work
and these offline solutions with default setting, the number

TABLE II
COMPARISON WITH OFFLINE SOLUTIONS OF DEFAULT SETTING. BEST

AND SECOND-BEST ARE HIGHLIGHTED IN BOLD AND UNDERLINE.

Methods Total Time (min) PSNR
Counter Train YD Palace Counter Train YD Palace

3DGS 37.35 26.06 25.03 39.16 30.37 24.64 22.09 23.98

Taming-3DGS 24.66 21.39 20.85 23.89 30.25 24.31 22.15 23.71

Adr-Gaussian 28.68 21.71 45.19 28.09 29.57 23.07 23.57 22.19

Ours-Offline GS 24.16 19.98 34.71 21.93 29.75 22.79 24.13 23.83

On-the-Fly GS 15.33 19.57 8.25 16.92 27.68 21.01 22.04 21.41

of iterations for these offline methods is set to 30,000. As
shown in Tab. II and Fig. 5, in general, the overall rendering
quality of our On-the-Fly GS is around 80%–90% of that
generated by these offline solutions. Nevertheless, our On-
the-Fly GS demonstrates a significant advantage in terms
of time efficiency, while also producing superior results in
certain rendered images. Furthermore, as YD is a UAV image
dataset, the 3DGS and Taming-3DGS can only run 11,000
and 10,500 iterations due to excessive memory consumption
(the results presented in Tab. II and Fig. 5 correspond to this
specific training setting), which also prove the effectiveness
of our method in handling model size.

On-the-fly SfM [25] can also process sequential video
frames, thus, we further tested two SLAM benchmarks and
compared with several real-time NVS methods based on
SLAM, including NICE-SLAM [22], Vox-Fusion [23], GS-
SLAM [21], and MonoGS++ [24]. Quantitative comparisons
are shown in Table III. On-the-Fly GS typically performs the
best or second best on the evaluation metrics.

C. Ablation Studies

To more explicitly assess the efficacy of each compo-
nent implemented in our method, we conduct an extensive



Fig. 5. Rendering Results of On-the-Fly GS and Offline solutions with default settings

TABLE III
COMPARISON WITH SLAM-BASED METHOD. BEST AND SECOND-BEST

ARE HIGHLIGHTED IN BOLD AND UNDERLINE.

Methods fr1 room fr1 desk
PSNR SSIM LPIPS PSNR SSIM LPIPS

NICE-SLAM 11.39 0.37 0.62 13.83 0.56 0.48
Vox-Fusion 14.20 0.56 0.55 15.79 0.64 0.52
MonoGS 14.76 0.52 0.60 17.31 0.65 0.38
MonoGS++ 22.16 0.77 0.31 22.85 0.82 0.60
Ours 22.17 0.84 0.32 24.23 0.86 0.26

TABLE IV
ABLATION EXPERIMENT OF THE PROPOSAL COMPONENTS IN THE

ON-THE-FLY GS METHOD.

Methods Time Cost (min) Video Memory (MB) PSNR SSIM LPIPS

No IW 11.21 123.7 21.04 0.83 0.36
No GO 12.96 271.13 16.62 0.69 0.48
No Load 14.02 400.47 21.03 0.84 0.33
No SPB 18.29 182.96 21.21 0.86 0.36
Ours 11.19 173.94 21.24 0.86 0.36

ablation study as follows. Based on the Palace dataset,
we first process it with our full On-the-Fly GS and then
sequentially switch off one of the following training strate-
gies: 1) Image Weighting and Training Iteration Allocation
(No IW). 2) Global Optimization (No GO). 3) Load Balanc-
ing (No Load). 4) Splatting-based Parallelism in Backprop-
agation (No SPB). In particular, the cost time in this context
refers to the total time required for 3DGS model training
after the On-the-Fly SfM completes the pose estimation
for each newly fly-in image. The corresponding quantitative
results are presented in Table IV and Fig. 6.

Based on Table IV and Fig. 6, switching off any of
the proposed components can negatively impact the 3DGS
training, validating their corresponding effectiveness: 1) Im-
age Weighting and Training Iteration Allocation improves
the final rendering quality and also slightly reduces time
consumption. 2) Global Optimization reduces the memory

and time consumption while enhancing model quality. 3)
Load Balancing primarily works on memory saving, whereas
Splatting-based Parallelism in Backpropagation accelerates
training speed. Overall, these ablation study results demon-
strate the effectiveness of all the proposed strategies.

Fig. 6. Rendering Results of Ablation Studies

VI. CONCLUSION
In this paper, we propose On-the-Fly GS, a novel near

real-time 3DGS training framework via a progressive opti-
mization manner, which can dynamically output 3DGS field
during image capturing. First, we introduce a method for
weighting images and allocating different training iterations
to each newly captured image during local optimization,
enabling fast training for the newly expanded region. Second,
we present a new learning rate updating solution based on
image rendering quality, adaptively calculating the learning
rate for each training iteration based on the training progress
of the current image and its neighboring connected images.
Finally, inspired by Adr-Gaussian and Taming 3DGS, we
further control the number of Gaussians and improve training
efficiency. The conducted experiments demonstrate that our
On-the-Fly GS successfully achieves near real-time 3DGS
training and considerable rendering performance, even when
the input images lack spatial and temporal continuity.
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